Gabon’s Wild West Frontier Promises a Golden Age of Discovery for the Deep Offshore

Tony Younis, Michael Clutterbuck, Phil Birch
These slides (the "Document") have been prepared and issued on behalf of Impact Oil & Gas Limited and/or its subsidiaries (the "Impact Group") for information purposes only.

This Document is for information purposes only and does not constitute or form part of any offer or invitation to sell or issue, or any solicitation of any offer to purchase or subscribe for, any shares or securities in any member of the Impact Group in any jurisdiction. The contents of this Document are not to be construed as a recommendation to acquire shares in any member of the Impact Group, or as legal, financial or tax advice. If necessary, each recipient of this Document should consult his, her or its own legal adviser, financial adviser, tax adviser or other relevant adviser.

This Document and any materials distributed in connection with the Document, include statements that are, or may be deemed to be, "forward-looking statements". These forward-looking statements can be identified by the use of forward-looking terminology, including, for example, the terms "believes", "estimates", "plans", "projects", "anticipates", "expects", "intends", "may", "will", or "should", and may include statements regarding the current intentions, beliefs or expectations of the directors (the "Directors") of members of the Impact Group. By their nature, forward-looking statements and statements of intention involve risk and uncertainty because they relate to future events and circumstances and are based on certain factors and assumptions. Whilst the Directors consider these factors and assumptions to be reasonable based upon information currently available, they may prove to be incorrect, therefore reliance should not be placed on these forward looking statements. Save as required by law or by any applicable rules or regulations, the Impact Group undertakes no obligation to publicly release the results of any revisions to any forward-looking statements in this Document.

No representation or warranty, express or implied, is or will be made as to, or in relation to, and no responsibility or liability is or will be accepted by the Impact Group or its directors, officers, employees or by any of its agents as to, or in relation to, the accuracy or completeness of the information, data or opinions contained in this Document.

All rights are reserved and none of the material in this presentation may be reproduced without the express written permission of the Impact Group.
OPEC member and net oil exporter

Oil sector makes up 45% of GDP and 80% of exports (World Bank)

But oil reserves have steadily declined over the last 30 years

Peak oil production in 1997 stood at 370,000 bbls/day

Oil production as at the end of 2017 stood 200,000 bbls/day

Dramatic increase in oil reserves in mid 80s with onshore pre-salt discoveries

Increase in potential gas reserves since 2013 thanks to pre-salt exploration in the deep offshore

Can we hope for another wave of oil discoveries from the deep offshore play?

- Yes and it’s located in Gabon’s ultra-deep ‘Wild West’
An **Outer High** is conventionally perceived as a large ‘terminal horst’ boundary separating transitional and oceanic crust – composed of basement or igneous rock.

But is it always the case?
Gabon’s Hyperextended Margin

- Impact’s D13/D14 blocks located within the distal and outer tectonic domains of the West African hyperextended margin
- The Outer High separates two basins; an inner salt basin, and an oceanward outer marginal basin
- Advent of high resolution 3D data provides insights into the true nature of some of these structures

Regional Tectonic Framework

- Location: South Gabon

Vintage 2D
2D vs 3D PSDM Seismic Comparison

Location: South Gabon

Martin et al. (2009)

2D Regional Dip Line

Breakup Unconformity (Depth)

2018 HGS-PESGB Africa Conference
Outer Highs can be made of sediment

- Outer High's can be composed of sedimentary rocks instead of non-prospective basement and forming new play concepts
- These horst-like structures are superimposed above the final remnants of continental crust before entering transitional and oceanic basement domains westward
- The Outer High additionally acts as the barrier between the landward inner salt basin and the oceanward outer marginal basin
Outer Highs can be made of sediment

Outer High’s can be composed of sedimentary rocks instead of non-prospective basement and forming new play concepts

These horst-like structures are superimposed above the final remnants of continental crust before entering transitional and oceanic basement domains westward

The Outer High additionally acts as the barrier between the landward inner salt basin and the oceanward outer marginal basin
Outer Highs can be made of sediment

So how do we get here?
Tectonic Evolution

Early Rift I – Barremian

Basin bounding fault against an ‘H’ block creates maximum accommodation for thick lacustrine shales
Continued rifting allows for the accumulation of thick fluviatile deposits

Late Rift I – Late Barremian

BARREMIAN - 126MA

- Continued rifting
- Large syn-rift wedge of sediment develops in distal margin
- Rapid deposition of Dentale fluviatile source and reservoir facies
- Continued extension along border fault
- High basal heatflow during rifting

TERTIARY

- Neogene
- Oligocene
- Paleocene – Eocene
- Upper Cretaceous
- Ceno-Turonian
- Albian
- Aptian
- Barremian
- Neocomian

CRETACEOUS

- Synrift
- Early rift
- Late rift

LITHOSPHERIC MANTEL

- Lower Ductile Crust
- Rapidly Maturing Moho

Dentale Fm.

- narrow deep lakes
- high clastic input
- fresh water conditions
- warm, wet climate
- high algal bloom, plant detritus, nutrients
- anaerobic bottom conditions

2018 HGS-PESGB Africa Conference
Initiation of sag leads to deposition of up to 300m of marine Gamba sands

APTIAN - 124MA

- Transition into sag megasequence
- Accommodation greatest basinward toward border fault depositing thickest Gamba reservoir sands
- Gamba sands typically 30-50m on shelf and onshore
- Angular unconformity between Dentale and Gamba reservoir packages

Data courtesy of CGG Multi-Client and New Ventures
Tectonic Evolution

Inversion – Mid Aptian

Transpression causes reactivation along the basin bounding fault inverting the sedimentary half-graben.

APTIAN - 122MA

Carbonate growth on inversion anticline in a shallow marine environment

Transpression along Mayumbe FZ causes inversion

Active passive inversion along border fault

+ve Hard

-ve Soft

Carbonate builds above inverted outer high

Inverted anticline

Data courtesy of CGG Multi-Client and New Ventures

Neogene

Oligocene

Paleocene - Eocene

Upper Cretaceous

Ceno-Tur.

Albian

Aptian

Barremian

Neocomian

PRE-REFT

SYN-REFT

EARLY CRET

LATE CRET

LATE DRIFT

EARLY DRIFT

TERTIARY

CRETACEOUS

LITHOSPHERIC MANTLE

LOWER DUCTILE CRUST

1300C

Peak isotherm

Tectonic Direction

Brittle Failure of H-block

H-BLOCK
Tectonic Evolution

Early Rift II – Late Aptian

Onset of hyperextension creates new fault family to the west as salt is deposited in a hypersaline environment.
Early Drift – Mid. Albian

Rapid subsidence within ‘Outer’ trough as seafloor spreading commences → deposition of outboard source

- Salt and source deposited in restrictive marine conditions
- Complete delamination of Upper Crust
- First Oceanic Crust accretion
- Isotherm isostatically driven to area of least continental crust

South Gabon (D13)

North Gabon

Data courtesy of CGG Multi-Client and New Ventures
Tectonic Evolution

Drift & Congo Fan - Miocene

Onset of Congo shaley sequence finally seals the structural high
Continued sedimentation from the Congo provides necessary overburden to mature ‘Outer’ source rocks.

What are the implications on prospectivity?
Aptian Gamba transgressive marine sand is the principal reservoir in Gabon.

Westward thickening Gamba package toward original basin-bounding fault where accommodation is greatest.

D13/D14 near deepest part of Aptian depocentre, accumulating thickest Gamba.

Prominent high means less burial and greater preservation of primary porosity.
Albian-Turonian Source Rock

- Albian-Turonian source rocks deposited in a depocentre west of the Outer High over attenuated continental and transitional crust.
- Albian-Turonian source rock charging fields in Angola, North Gabon, Rio Muni and the Brazilian conjugate margin. Has yet to be explored in South Gabon!
- Albian source rocks at DSDP 364 (Angola) recorded an average of 10 wt% TOC and ~ 500 HI.
- Continuous, layer-parallel reflectors identified in seismic across both margins for Albo-Turonian marine sequence.

![Map of Brazil and Gabon with geological features](image)

- **BRAZIL**
 - Moita Bonita – Sergipe (Brazil)
 - Ultra-deep water oil discoveries situated near the OCB by Albian-Turonian source rocks

- **GABON**
 - B.) D13/D14 – South Gabon Basin
 - Estimated outline of the Outer Marginal Trough which accommodates thick marine Alb-Tur source rocks
 - Isostatic Residual 300km pass
 - Recent discoveries charged by pre-salt source rocks

2018 HGS-PESGB Africa Conference 19
Source-Reservoir Sweet Spots

- Albian-Turonian ubiquitously deposited across South Atlantic
- Post-rift source rocks matured through fan overburden
- Juxtaposition of mature post-salt source rocks against the pre-salt reservoirs within the Outer High

What will the principal source rock be here?
What is the principal source rock?

Pre-Salt Source Rocks
- Seal *post-dates* charge

- If salt had sealed the structure at 120Ma → gas charge from the pre-salt Neocomian-Barremian ‘Inner Kitchen’ would have been trapped (as seen at recent Diaman, Leopard, and Boudji pre-salt discoveries)

- **BUT**...the Outer High is absent of Aptian Ezanga salt seal → allows for pre-salt sourced hydrocarbons to migrate through the structure and out to the surface

Post-Salt Source Rocks
- Seal *pre-dates* charge

- So...when was this Outer High finally sealed?
 - Top seal provided by the Tertiary deepwater shales of the Congo Fan at 23Ma
 - Multiple giant oil fields including Kizomba Field (*Angola*) demonstrate the excellent sealing capacity of the Oligo-Miocene shales within the Congo Fan
 - Continued Congo Fan deposition provides the necessary overburden to mature the post-salt Albo-Turonian source rocks into the oil generating window

Principal source rock provided by Type II Albo-Turonian post-salt shales
What about DHIs?

- Abundant evidence of an active petroleum system
- Outer High acting as a focal point for hydrocarbon migration
- Credible flatspot within the structural high

SOURCE
- Albian-Turonian Oil Mature [✓]

RESERVOIR
- Aptian Gamba-Dentale [✓]

SEAL
- Oligo-Miocene Shales [✓]

TIMING
- Maturity through Congo Fan [✓]

DHI
- Flatspot through structure [✓]
Conclusions

- New, high quality 3D PSDM seismic brought the ‘Outer High’ into sharp focus.
- Not all ‘Outer Highs’ are comprised of non-prospective basement; they can be sediment-filled half-grabens, later tectonically inverted as the ‘Outer’ domain transitions into hyperextension.
- The proven Albo-Turonian source interval from Equatorial Guinea to Angola and Brazil is observed within the ‘Outer’ basin of South Gabon.
- Juxtaposing the pre-salt Gamba-Dentale Outer High reservoirs with the post-salt Albo-Turonian source rocks provides for the meeting of two mighty plays.
- Late Tertiary shale seal timing is critical to avoiding capture of gas charge from Barremian pre-salt source rocks but remains favourable for post-salt oil capture.
- **Materiality is the key to unlocking the potential of Gabon’s ultra-deep frontier.**

Data courtesy of CGG Multi-Client and New Ventures.
Thank you

Email: tyounis@impactoilandgas.com

Special thanks to the following companies: