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Liquids from Shales

Milind Deo, Ph.D.
Professor and Chair
Chemical Engineering

Palash Panja, Ph.D.
Post-Doctoral Researcher
Energy & Geoscience Institute

• Probability density functions (PDFs)
• Obtained using Monte Carlo simulations
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Oil Recovery from Shales
1 yr 10 yrs 20 yrs Economic Rate

5 bbl/d/fracture
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Symbol Property

Km Matrix perm

Xf Hydraulic 
Fracture spacing

Rsi Initial dissolved
gas oil ratio

dRs/dp Slope of 
dissolved GOR

Pi Initial pressure

ng Gas rel. perm 
exponent

Cf Compressibility

Pwf Producing BHP Only 2 of the variables are operationally

controllable parameters

Most important
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Ranking



Bryony Richards, Ph.D.
Senior Petrologist
Energy & Geoscience Institute





• Pressure – 15,000 psi
• Temperature 300oF
• High-resolution Volume and

Pressure Measurements

Absolute permeability

1 Day, 200 nD 14 days, 5 nD

Relative permeability

Shale Interrogator



Manas Pathak, Ph.D.
Energy & Geoscience Institute



rockporerock

Micro

rockporerock

Nano

Surface Interaction

At the Nano-scale, 
permeability is not a rock 
property but also depends 
on fluid-rock interaction
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Shale Gas Production Analysis

Cumulative production and production rate

where       depends on:
– Pressures (bhfp, pore or reservoir pressure)
– Reservoir quality/ GIP (permeability, porosity)
– Gas properties (viscosity, compressibility, equation of state)
– Productive fracture surface area
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Ian Walton, Ph.D.
Research Scientist
Energy & Geoscience Institute

Gas Production Model



• Measure the production coefficient
• Estimate pressures, porosity etc
• Infer productive fracture surface area

Productive fracture 
surface area in the 
Barnett: 1-5 MM sq ft.
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Example
15 transverse hydraulic fracs each 
200 ft high and 500 ft across

Frac surface area = 2*15*200*500 sq ft
= 3 MM sq ft

Mass balance

• Frac fluid: 
Frac surface area ~ 100 MM sq ft

• Proppant: 
Propped frac surface area 
~ 1-5 MM sq ft 

Estimate of Created Fracture Surface Area



• Gas is produced from  
the volume defined 
by extent of primary 
fracture network

• Most of the fracture 
fluid resides in the 
large secondary 
fracture network and 
is eventually imbibed 
into the matrix

Large scale slickwater fracturing is very inefficient: the
volume of the productive fractures represents only a
small percentage of the volume of the fluid pumped.

Productive Reservoir Volume
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Greater penetration, lower fracture density?

Idealized Conception

www.halliburton.com

Lower GRV, higher fracture density?

Plausible Complexity

www.drillingcontractor.org

Interaction with 
hoop stress

Interaction with 
natural fractures

Interaction with 
bedding

Lans Taylor, Ph.D.
Research Scientist
Energy & Geoscience Institute

Large Scale Geologic Controls 
on Hydraulic Stimulation

John McLennan, Ph.D.
Associate Professor of Chemical Engineering
Energy & Geoscience Institute

Mechanical Stratigraphy for 
Hydraulic Stimulation



Does bedding plane slip explain diffuse 
zones of micro-seismicity during frac jobs?

Jim Rutledge, SLB Microseismic Services, “The Signature of 
Shearing Driven by Hydraulic Opening”, HGS Mudrocks Conf. 2015

Systematic Chaotic



North Sea

Karoo, S. Africa

Photo:  Alan Cooper, www.otago.ac.nz





Compressional Crossing

Process Zone

Material 1

Material 2

Material 1

Material 2

σK1 σK1

σT σT

Modified from Renshaw & Pollard, 1995



Rigid but compressible vs.
Flexible but incompressible

Initial condition

Vertical load
unconfined

Vertical load
lateral confinement

σHflexible > σHrigid

as Poisson Ratio decreases, 
Young’s Modulus increases
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How is present day stress influenced by basin form and topography?

Does creep enhance stress heterogeneity?
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Stratigraphic arrangement matters

Horizontal Stress Magnitude
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Horizontal Stress Magnitude
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Different placement of horizontal wells will lead to different hydraulic fracture patterns

Net PressureNet Pressure



Finite Element

Behavior of gradational interfaces

Direct measurement

Discrete Element Models



Curvature Analysis

SLB: Dynel2D
Courtesy of Laurent Maerten

1) Input horizon 3) Stress prediction2) Bending model



Curvature for Unconventional Targets

Rigid layers isolated

Flexible layers isolated



Dislocation Analylsis

(Maerten, et al., AAPG Bull, 2006)

Fault Locking

Regional / Counter-regional Faulting
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