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Optimized Recovery from Unconventional Reservoirs: How Nanophysics, the

Micro-Crack Debate, and Complex Fracture Geometry Impact Operations
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Large Rasoul Sorkhabi | Global Systems

Slow

2 New Books

LI

Michal Nemcok | Orogenic Systems

Lansing Taylor | Prospect- to Seismic-scale Structure

John McLennan | Reservoir Geomechanics

lan Walton | Well-bore Geomechanics

Milind Deo | Pore to Nano-scale Engineering

Small

Fast
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Optimized Recovery from Unconventional Reservoirs
150 ft

"~ * Near Wellbore

Net present value

L 4
Completion Technology /

S~ e Well-to-Well

1000 ft

Net present value

Spacing [ Geometry

A

. Field —

O\ Development L )

Jv

Net present value

Pressure Maintenance

Energy & Geoscience Institute EGI

AT THE UNIVERSITY OF UTAH




Liquids from Shales
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Kn Matrix perm

X Hydraulic
Fracture spacing

Rs; Initial dissolved
gas oil ratio

dRs/dp Slope of

dissolved GOR

P Initial pressure

N, Gas rel. perm
exponent

Cs Compressibility

Pt Producing BHP
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Oil Recovery from Shales

10 yrs 20 yrs Economic Rate
5 bbl/d/fracture Ranking

Most important
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P G dRedp
- *P\Nf ng ng Least important

Only 2 of the variables are operationally
controllable parameters




Bryony Richards, Ph.D.
Senior Petrologist

‘Optical Petrography (mm) i i
ptical Petrography (mm) Energy & Geoscience Institute

X-Ray Diffraction (XRD)
) X-Ray Fluorescence (XRF)

Mineralogical Analysis | E4 \ Combination of chemical analysis and high-resolution imaging

Mineralogical Analysis
Brittleness
Micro-facies

b i

Fracture Analysis High-resolution imaging and elemental mapping

Mineral infill
Mineralogical associations

Geometry

Porosity Analysis .. J Ultra high-resolution imaging

Mineral infill
Mineralogical associations
Pore architecture

Pore geometry

oy
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~200 pm (0.2 mm)
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Shale Interrogator

* Pressure — 15,000 psi
* Temperature 300°F

* High-resolution Volume and

Pressure Measurements
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Core-Sized Synthetic Shale

Manas Pathak, Ph.D.
Energy & Geoscience Institute

“\\HEXAGONAL CuUBIC LAMELLAR
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Darcy’s Law Formula Surface Interaction
B —kA(P,— P,)
= L

Q — total discharge inm3/s

pore

k — soil coef ficient of permeability in m?

A — cross sectional area of flow in m?
P, — initial pressure in Pa

P, — final pressure in Pa

W — viscocity in Pa

L — lengthinm

Micro

At the Nano-scale,
permeability is not a rock
property but also depends
on fluid-rock interaction
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Nano
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Molecular Dynamics Restriction
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Bubble point is suppressed
in nano-pores
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Shale Gas Production Analysis

lan Walton, Ph.D.
Research Scientist
Energy & Geoscience Institute
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Gas Production Model

Cumulative production and production rate

C
= C _/t, —1_P
9= 1=y

where C, depends on:

production rate (bsc/yearf)

Pressures (bhfp, pore or reservoir pressure)

Reservoir quality/ GIP (permeability, porosity)

Gas properties (viscosity, compressibility, equation of state)
Productive fracture surface area
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Estimate of Productive Fracture Surface Area
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Surface area (MM sq ft)
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Measure the production coefficient

Estimate pressures, porosity etc

Infer productive fracture surface area

Typical Productive Fracture Surface For Barnett Wells

matrix permeability (nD)

\\
\\
\ \ -l.—poor producer
-\ \ \ average producer
\ \ ¥ =d—good produder
\ e
D %
o 100 200 300 4(;0

500

Productive fracture
surface area in the
Barnett: 1-5 MM sq ft.



Estimate of Created Fracture Surface Area

Mass balance

Frac fluid:
Frac surface area ~100 MM sq ft

Proppant:
Propped frac surface area
~1-5 MM sq ft

Example
15 transverse hydraulic fracs each
200 ft high and 500 ft across

Frac surface area = 2*¥15*200%500 sq ft
=3 MM sq ft
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Productive Reservoir Volume

* Gasis produced from
the volume defined
by extent of primary
fracture network

MSV

 Most of the fracture
fluid resides in the
large secondary
fracture network and
is eventually imbibed
into the matrix

- Large scale slickwater fracturing is very inefficient: the
volume of the productive fractures represents only a
small percentage of the volume of the fluid pumped.
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Kn Matrix perm

X Hydraulic
Fracture spacing

Rs; Initial dissolved
gas oil ratio

dRs/dp Slope of

dissolved GOR

P Initial pressure

N, Gas rel. perm
exponent

Cs Compressibility

Pt Producing BHP

Energy & Geoscience Institute
AT THE UNIVERSITY OF UTAH

Oil Recovery from Shales

10 yrs 20 yrs Economic Rate
5 bbl/d/fracture Ranking

Most important

A

Km *Xf *Xf Rsi
Rs; Rs; Rs; *Xs
P. P.

P G dRedp
- *P\Nf ng ng Least important

Only 2 of the variables are operationally
controllable parameters




Large Scale Geologic Controls
on Hydraulic Stimulation

John McLennan, Ph.D.
Associate Professor of Chemical Engineering
Energy & Geoscience Institute

Mechanical Stratigraphy for
Hydraulic Stimulation

Lans Taylor, Ph.D.
Research Scientist
Energy & Geoscience Institute
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Idealized Conception

www.halliburton.com

Greater penetration, lower fracture density?

Plausible Complexity —
—— - R — ' - , Interaction with
'5 Bihos % S “o! natural fractures
.w (3 ,’:Z L & ‘ =

Interaction with
bedding

Interaction with

! Nl 3 SRE hoop stress
G N VLT e >

www.drillingcontractor.org

Lower GRYV, higher fracture density?



Does bedding plane slip explain diffuse
zones of micro-seismicity during frac jobs?

Jim Rutledge, SLB Microseismic Services, “The Signature of
Shearing Driven by Hydraulic Opening”, HGS Mudrocks Conf. 2015

Systematic D> Chaotic
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Compressional Crossing

Material 1 Material 1

. . —
Material 2 Material 2
o K
P R— —) GK1 - > GK’I
Modified from Renshaw & Pollard, 1995
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How is present day stress influenced by basin form and topography?

Most generic rock model

1400
12001 ©° f(e, Ey, By, 1) & b
| . - > P as s STt L
e S s AT
X Creep = R s (g ) f
A gl e P . N~
= % & fy\,‘)édt.,/“}:é‘i‘l 2 W
S 600 | Does creep enhance stress heterogeneity?
£
* 400 1
gc\'\m'\i
200 1 Secondary &
Standard Linear Solid (Viscoelastic)
0 - \ T .
0 0.005 0.01 0.015 0.02

Strain

Energy & Geoscience Institute EGI

AT THE UNIVERSITY OF UTAH



FLEXIBLE

Horizontal Stress Magnitude
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Compressive Compressive
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Coarsening upward sequence
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Stratigraphic arrangement matters

| thin shale
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in sand
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Net Pressure Net Pressure
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Different placement of horizontal wells will lead to different hydraulic fracture patterns

Horizontal Well
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Curvature Analysis

1) Input horizon 2) Bending model 3) Stress prediction

low curvature  moderate curvature  high curvature
poor production moderatre production good production
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Plate bending Flexuralslip
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outer-arc extension
Inner-arc contraction

L<le< L, pin

SLB: Dynel2D
Courtesy of Laurent Maerten

simple shear acting on
L=L bedding planes
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Curvature for Unconventional Targets

Flexible layers isolated
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Dislocation Analylsis
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Dr. W. Lansing Taylor
ContactEGI@egi.utah.edu | egi.utah.edu | 801.581.8430
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