

Optimized Recovery from Unconventional Reservoirs: How Nanophysics, the Micro-Crack Debate, and Complex Fracture Geometry Impact Operations

Salt Lake City | Bratislava | Calgary | Houston | Jammu | London | Sydney

~120 EGI Staff & Affiliated Scientists

Optimized Recovery from Unconventional Reservoirs

Liquids from Shales

Milind Deo, Ph.D. Professor and Chair Chemical Engineering

Palash Panja, Ph.D. Post-Doctoral Researcher Energy & Geoscience Institute

- Probability density functions (PDFs)
- Obtained using Monte Carlo simulations

Symbol	Property	
K _m	Matrix perm	
X _f	Hydraulic Fracture spacing	
Rs _i	Initial dissolved gas oil ratio	
dRs/dp	Slope of dissolved GOR	
P _i	Initial pressure	
n _g	Gas rel. perm exponent	
C _f	Compressibility	
P _{wf}	Producing BHP	

Oil Recovery from Shales				
1 yr	10 yrs	20 yrs	Economic Rate 5 bbl/d/fracture	Ranking
*X _f	K _m	K _m	K _m	Most important
K _m	*X _f	$*X_{f}$	Rs _i	Ť
Rs _i	Rs _i	Rs _i	$*X_{f}$	
P _i	dRs/dp	dRs/dp	P _i	
dRs/dp	P _i	P _i	C _f	
*P _{wf}	n _g	C _f	dRs/dp	
n _g	C_{f}	*P _{wf}	*P _{wf}	•
C _f	*P _{wf}	n _g	n _g	Least important

Only 2 of the variables are operationally controllable parameters

Optical Petrography (mm) X-Ray Diffraction (XRD) X-Ray Fluorescence (XRF)

Core

Sample

SEM (µm)

Mineralogical Analysis

Mineralogical Analysis

- Brittleness
- Micro-facies

Fracture Analysis

- Mineral infill
- Mineralogical associations
- Geometry

Porosity Analysis

- Mineral infill
- Mineralogical associations
- Pore architecture
- Pore geometry

Bryony Richards, Ph.D. Senior Petrologist Energy & Geoscience Institute

Combination of chemical analysis and high-resolution imaging

Combination of chemical analysis and high-resolution imaging

High-resolution imaging and elemental mapping

High-resolution imaging

Ultra high-resolution imaging

STEM

(nm-pm)

Energy & Geoscience Institute

Shale Interrogator

- Pressure 15,000 psi
- Temperature 300°F
- High-resolution Volume and Pressure Measurements

Relative permeability

Energy & Geoscience Institute

Absolute permeability

Manas Pathak, Ph.D. Energy & Geoscience Institute

 $\begin{array}{l} \hline \textbf{Darcy's Law Formula} \\ \textbf{Q} &= \frac{-kA(P_b - P_a)}{\mu L} \\ Q &= total discharge in m^3/s \\ k &= soil coefficient of permeability in m^2 \\ A &= cross sectional area of flow in m^2 \\ P_b &= initial pressure in Pa \\ P_a &= final pressure in Pa \\ \mu &= viscocity in Pa \\ L &= length in m \end{array}$

At the Nano-scale, permeability is not a rock property but also depends on fluid-rock interaction Surface Interaction

Molecular Dynamics

Bubble point is suppressed in nano-pores

Restriction

Drop below bubble point

Energy & Geoscience Institute

Gas Production Model

Cumulative production and production rate

Shale Gas Production Analysis

Ian Walton, Ph.D. Research Scientist Energy & Geoscience Institute

where C_p depends on:

- Pressures (bhfp, pore or reservoir pressure)
- Reservoir quality/ GIP (permeability, porosity)

 $Q = C_p \sqrt{t}, \quad q = \frac{1}{2} \frac{C_p}{\sqrt{t}}$

- Gas properties (viscosity, compressibility, equation of state)
- Productive fracture surface area

Estimate of Productive Fracture Surface Area

- Measure the production coefficient
- Estimate pressures, porosity etc
- Infer productive fracture surface area

Typical Productive Fracture Surface For Barnett Wells

Estimate of Created Fracture Surface Area

Mass balance

- Frac fluid:
 Frac surface area ~ 100 MM sq ft
- Proppant:
 Propped frac surface area
 ~ 1-5 MM sq ft

Example

15 transverse hydraulic fracs each 200 ft high and 500 ft across

Frac surface area = 2*15*200*500 sq ft = 3 MM sq ft

Productive Reservoir Volume

- Gas is produced from the volume defined by extent of primary fracture network
- Most of the fracture
 fluid resides in the
 large secondary
 fracture network and
 is eventually imbibed
 into the matrix

Large scale slickwater fracturing is very inefficient: the volume of the productive fractures represents only a small percentage of the volume of the fluid pumped.

Symbol	Property	
K _m	Matrix perm	
X _f	Hydraulic Fracture spacing	
Rs _i	Initial dissolved gas oil ratio	
dRs/dp	Slope of dissolved GOR	
P _i	Initial pressure	
n _g	Gas rel. perm exponent	
C _f	Compressibility	
P _{wf}	Producing BHP	

Oil Recovery from Shales				
1 yr	10 yrs	20 yrs	Economic Rate 5 bbl/d/fracture	Ranking
*X _f	K _m	K _m	K _m	Most important
K _m	*X _f	$*X_{f}$	Rs _i	Ť
Rs _i	Rs _i	Rs _i	$*X_{f}$	
P _i	dRs/dp	dRs/dp	P _i	
dRs/dp	P _i	P _i	C _f	
*P _{wf}	n _g	C _f	dRs/dp	
n _g	C_{f}	*P _{wf}	*P _{wf}	•
C _f	*P _{wf}	n _g	n _g	Least important

Only 2 of the variables are operationally controllable parameters

Large Scale Geologic Controls on Hydraulic Stimulation

John McLennan, Ph.D. Associate Professor of Chemical Engineering Energy & Geoscience Institute

Idealized Conception

www.halliburton.com

Greater penetration, lower fracture density?

Basebact Interaction with datural fractures Interaction with datural fractures Interaction with datural fractures

www.drillingcontractor.org

Lower GRV, higher fracture density?

Mechanical Stratigraphy for Hydraulic Stimulation

Lans Taylor, Ph.D. Research Scientist Energy & Geoscience Institute

Does bedding plane slip explain diffuse zones of micro-seismicity during frac jobs?

Jim Rutledge, SLB Microseismic Services, "The Signature of Shearing Driven by Hydraulic Opening", HGS Mudrocks Conf. 2015

North Sea

Energy & Geoscience Institute

Energy & Geoscience Institute

Compressional Crossing

Modified from Renshaw & Pollard, 1995

EGI

Energy & Geoscience Institute

tension

Strain

Flexible but incompressible

extension 🗲

Energy & Geoscience Institute

AT THE UNIVERSITY OF UTAH

Constant stress

How is present day stress influenced by basin form and topography?

Most generic rock model

Does creep enhance stress heterogeneity?

Energy & Geoscience Institute

Horizontal Stress Magnitude

Least Compressive Most Compressive

Energy & Geoscience Institute

Stratigraphic arrangement matters

Horizontal Stress Magnitude

Least Compressive

Most Compressive

Different placement of horizontal wells will lead to different hydraulic fracture patterns

Behavior of gradational interfaces

contrasting

Direct measurement

Discrete Element Models

Energy & Geoscience Institute

Curvature Analysis

Energy & Geoscience Institute

Curvature for Unconventional Targets

Energy & Geoscience Institute

Dislocation Analylsis

(Maerten, et al., AAPG Bull, 2006)

Fault Locking

Regional / Counter-regional Faulting

Energy & Geoscience Institute

Dr. W. Lansing Taylor ContactEGI@egi.utah.edu | egi.utah.edu | 801.581.8430