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Can Machines Learn at
a Basin Scale?

20 yrs developing automated salt recognition in seismic
— Experiments based on a few lines from a single, modern survey
— Usually employ “supervised” learning algorithms — high expert input
Big returns to machine learning come from:
— Application to massive data sets
— Methods robust for old, disparate, noisy data
— Probabilistic evaluation of certainty of results

Test by mapping basin-wide top of salt for Gulf of Mexico
— 8,000+ 2D SEG-Y files: >250,000 line-miles covering ~ 100,000 mi?
— Old, disparate data: 82 surveys shot from 1981 — 1992
— Minimize expert costs by “unsupervised” learning algorithms

New value from massive legacy seismic resources
Foundation for iterative supervision approach
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Data Coverage
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Salt’s Seismic “Texture”
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GLCM Statistics

Of suite of 8 GLCM statistics computed, choose

— Best salt/non-salt discriminators

— Minimization of false positives (classifying salt when non-salt)
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Reflector Analysis
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« How are reflectors extracted?

— Apply “Raster to Polygon” tool in ArcGIS to produce polygons
around reflectors

— Extract polygons & lines in ArcGIS

— Attribute lines (reflectors) from data on enclosing polygons
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Geometry of High-Angle
Reflectors

« Paired high-angle reflectors indicate boundary of salt

— Look at only high dipping and strong reflectors

Paired high-angle
“chevron”
reflectors

—

Strong low-angle
reflectors

Non-paired
high-angle
reflectors
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Reflector Density Attribute

 Salt domes:

— few, short, randomly oriented reflectors — low densities

e Bedded rock:

— many, long, oriented reflectors — high densities

High reflacior cdflesittroeeddes $ecadin outside salt




Create Salt Score & Threshold

— Output binary image (salt = white; non-salt = black)
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Morphological Clean-Up




Top of Salt: Time
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Top of Salt: Time— Depth
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Depth to Top Salt ( x 1,000 ft; MSL)
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Boundary & Feature Evaluation

 Evaluate boundaries by gradient of texture (GoT)
— Characterize pixel intensity on both sides of boundaries
— Remove polygons with boundaries having GoT <0. 9 (GoT)Blggest

The difference between
the rectangles Is large

The average intensity
between these two "
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Coarse Accuracy — 2D




Coarse Accuracy - 3D
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High-Resolution Assessment
of Salt Boundary Accuracy

Grade for Line:

Color  Grade (I)_Ai)r?ef
Black 4 69
Yellow 3 24
Red 2 7
Total

wt'd
Grade

2.75
0.74
0.15
3.61
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* Decimate Graded Line
+ Estimate Grade Surface
via Kriging
» Estimate Prediction Error
Surface
* Produce Regional Maps
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Regional Certainty Map
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Results & Conclusions

Workflow of unsupervised learning algorithm + macro
editing produced reasonable regional salt map for GOM
— Domes recognized with high accuracy & good spatial precision
— Supplemental model needed for slope due to change in salt morphology
— Survey/regional problems revealed in macro-editing: fixed or dropped

Very low marginal cost to exploit large legacy assets
— Do project starting with 8,000 SEG-Y files

* About 2 weeks of expert time
» About 400 hours of (desktop) computer time

— Methods robust with variety of surveys and old data
— Same techniques apply to modern data with much higher returns

Unsupervised project is foundation of iterative model
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Next Step: Iterated Supervision

3. Intelligently sample 5. Execute
results & supervised
retain grading classification

4. Build very large,
labeled & graded
exemplar library

7. Adjust raster &

8. Rerun
unsupervised vector parameters for new
with new unsupervised iteration
parameters

6. Extract updated
parameters for
new iteration of

unsupervised

Stopping Rule: Convergence
Of Successive Iterations < a




