Machine-Learned Mapping of Basin-wide Salt: Old Data - New Methods

Scott Morris, Earth Science Associates

- Data Scientist, Earth Science Associates
- B.S. Statistics, University of California, Riverside
- M.S. Applied Mathematics, California State University, Fullerton.
- 6+ years at Earth Science Associate
 - Created a variety of data driven analytics tools supported by statistical models
 - Aid O&G exploration of hydrocarbons
 - Intelligence for lease activity in the Gulf of Mexico

1ST SUBSURFACE INTELLIGENCE AND ANALYTICS CONFERENCE - 2019

Applied Geoscience Conference

Machine-Learned Mapping of Basinwide Salt: Old Data – New Methods

Scott Morris, Tony Dupont and John D. Grace Earth Science Associates Long Beach, CA

1st Subsurface Intelligence and Analytics Conference - 2019

Can Machines Learn at a Basin Scale?

• 20 yrs developing automated salt recognition in seismic

- Experiments based on a few lines from a single, modern survey
- Usually employ "supervised" learning algorithms high expert input

• Big returns to machine learning come from:

- Application to massive data sets
- Methods robust for old, disparate, noisy data
- Probabilistic evaluation of certainty of results
- Test by mapping basin-wide top of salt for Gulf of Mexico
 - 8,000+ 2D SEG-Y files: >250,000 line-miles covering ~ 100,000 mi²
 - Old, disparate data: 82 surveys shot from 1981 1992
 - Minimize expert costs by "unsupervised" learning algorithms
- New value from massive legacy seismic resources
- Foundation for *iterative supervision* approach

Data Coverage

Fields with Salt-Related Trapping

Fields with Other Trapping

Salt's Seismic "Texture"

GLCM Grey Level Co-occurrence Matrix

Compute probabilities for all co-occurrences = GLCM

Compute statistics for GLCM

Assign statistics to pixel as attributes

Then move to the next pixel & repeat

GLCM Statistics

Of suite of 8 GLCM statistics computed, choose

- Best salt/non-salt discriminators
- Minimization of false positives (classifying salt when non-salt)

Reflector Analysis

salt/non-salt

How are reflectors extracted?

- Apply "Raster to Polygon" tool in ArcGIS to produce polygons around reflectors
- Extract polygons & lines in ArcGIS
- Attribute lines (reflectors) from data on enclosing polygons

Geometry of High-Angle Reflectors

Paired high-angle reflectors indicate boundary of salt

Look at only high dipping and strong reflectors

Reflector Density Attribute

- Salt domes:
 - few, short, randomly oriented reflectors \rightarrow *low* densities
- Bedded rock:
 - many, long, oriented reflectors \rightarrow high densities

High reflection reflessitions densidiess she staden outside salt

Create Salt Score & Threshold

Normalize Parameters

Output = binary image (salt = white; non-salt = black)

Post-TSad Stadion Bir Gresses additionary agent Image

Morphological Clean-Up

Baling and the Cidental states

Top of Salt: Time

Top of Salt: Time→ Depth

Estimated VelocitysEield

Boundary & Feature Evaluation

Evaluate boundaries by gradient of texture (GoT)

- Characterize pixel intensity on both sides of boundaries
- Remove polygons with boundaries having GoT < 0.9 (GoT)_{Biggest}

The average intensity between these two rectangles is about the same (low Gradient of Texture)

Coarse Accuracy – 2D

Hand-Trapped Bed Blog Bh Ball physics Bolys) Overhald/avkterTojolge Salt

Coarse Accuracy - 3D

SE/1005

High-Resolution Assessment of Salt Boundary Accuracy

Grade for Line:

Color	Grade	% of Line	Wt'd Grade
Black	4	69	2.75
Yellow	3	24	0.74
Red	2	7	0.15
Total			3.61

Nav Line

Point-Wise Grade:

- Decimate Graded Line
- Estimate Grade Surface via Kriging
- Estimate Prediction Error Surface
- Produce Regional Maps

Translation T-of Baded Sayt Boardes ties Nav Line

Regional Certainty Map

Results & Conclusions

- Workflow of unsupervised learning algorithm + macro editing produced reasonable regional salt map for GOM
 - Domes recognized with high accuracy & good spatial precision
 - Supplemental model needed for slope due to change in salt morphology
 - Survey/regional problems revealed in macro-editing: fixed or dropped

Very low marginal cost to exploit large legacy assets

- Do project starting with 8,000 SEG-Y files
 - About 2 weeks of expert time
 - About 400 hours of (desktop) computer time
- Methods robust with variety of surveys and old data
- Same techniques apply to modern data with much higher returns
- Unsupervised project is foundation of iterative model

Next Step: Iterated Supervision

