

Houston Geological Society Presents

An Informational Workshop

Flooding and Floodplains in the Houston Area: Past, Present, and Future: Part 1

Presented May 18, 2018

Dr. William R. Dupre'

Professor Emeritus
Earth & Atmospheric Sciences
University of Houston
wdupre@uh.edu

Who's in Charge !?

City of Houston, Bellaire, West University, Pasadena, etc.?

Municipal Utility Districts (MUDs)?

Levee Improvement District (LID)?

Harris County?

Harris County Flood Control District (HCFCD)?

U.S. Army Corps of Engineers (USACOE)?

Fort Bend County?

San Jacinto River Authority (SJRA)?

Texas Dept. of Transportation (TXDOT)?

FEMA	Acronyms !!	LOMC
NFIP	HCFCD	LOMA
FIRM	FAS	LOMR
SFHA	FWS	LID
Zone A,	NWS	AEP
Zone AE,	NOAA	ARI
Zone X	EPA	SJRA
LiDAR	PMP	USACOE
EIA	SSPEED	MUD
SIA	TSARP	CBA Presentation by W.R. Dupre', Univ. of Houston

"Am I at <u>risk</u> of flooding?"

Risk is a hazard evaluated in the context of the **frequency** and **magnitude** of the event [e.g. flood].

Risk = "Frequency" x "Magnitude"

When is Bad too Bad?

It depends on the **frequency** and **magnitude** of the event, and how and what you (or society) consider an acceptable level of risk!

Presentation by W.R. Dupre', Univ. of Houston

Benefit-Cost Analysis (BCA)

- A **Benefit-Cost Ratio** (BCR): the ratio of a project's total <u>benefits</u> divided by its total <u>costs</u>. The BCR is a <u>numerical</u> expression of the "cost-effectiveness" of a project. https://www.fema.gov/benefit-cost-analysis
- The *benefits of flood mitigation* have been found to outweigh the costs by a <u>benefit-cost ratio of 5:1</u> [based on a comprehensive analysis of 5,500 mitigation projects]. Thus for every dollar invested in flood hazard mitigation, \$5 in benefits accrue.

www.houstonconsortium.com/p/report

"Magnitude" is measured by: 1) Height/ discharge/ extent of flooding? The "Event" 2) Economic damage due to flooding? 3) Number of structures flooded? 4) Number of people affected? 5) Socio-economic impact? 6) Environmental impact?

Presentation by W.R. Dupre', Univ. of Houston

Annual Recurrence Interval (ARI)

The annual recurrence interval (ARI) of an event is the <u>average</u> number of years between events of equal or greater magnitude. Thus, the 100-year flood (or rain) is one which occurs, **on the average**, once every 100 years.

Annual Exceedance Probability (AEP)

The probability (p) of an event of particular magnitude being equaled or exceeded any given 12-month period is:

Therefore, a 100 year flood (or rain) has a 1 in 100 (1/100=1%) probability of being equaled or exceeded any 12-month period. **AEP** = $\frac{1}{ARI}$

	Exceedance Probability	Recurrence Interval	
	50%	2-Year	
	20%	5-Year	
	10%	10-Year*	
Used for flood	4%	25-Year	
insurance purposes	2%	50 -Year*	
	1%	100-Year*	
	0.4%	250 -Year	
	0.2%	500-Year*	
·		Presentation by W.R. Dupre'	. Univ. of Hous

Important Questions!

- What are the <u>causes</u> for past changes in flooding and the floodplain?
- What are the <u>predictions</u> for the future, and on what <u>assumptions</u> are those predictions made.
- What can we do about it?

FIRM's (Flood Insurance Rate Maps)

What information do they contain?

- 1. Special Flood Hazard Areas (SFHA) subject to flooding by 1% event
 - a) The regulatory floodway
 - b) The 1% (100 year) floodplain (Zones A & AE, etc.)
 - c) The 1% coastal floodplain (Zone V & VE)
- 2. The 0.2% (500 year) floodplain (Zone X shaded)
- 3. The area of **minimal flood hazard** (Zone X not shaded)
- 4. Base Flood Elevation (BFE) lines, etc.

How do you Calculate Flood-related Risk?

1) Streamflow Data:

- Graph-fitting curves
- Math-fitting curves
- 2) Regionalization (Parametric Models):
- From gaged basins to ungaged basins

3) Rainfall Data:

- Digital Streamflow Models: from rainfall to runoff
- 4) (Probable Maximum) Flood:
- especially for high-risk projects

Assumptions using Streamflow Records

- Events are random and independent
- Only deals with overbank flooding
- No watershed changes during period of record
- Data are not affected by climatic trends

Modified after U.S. Water Resources Council

Rainfall

- Historical rainfall data measured by rain gages or radar (e.g. TS Allison, Hurricane Harvey).
- Frequency-based hypothetical storm (e.g. 1%).
- Standard Project Storm (SPS). rarely used now, largely replaced by the 0.2% (500 yr) storm.

Does Rainfall = Runoff?

No ... only "Rainfall Excess"?

Rainfall Excess = Rainfall – losses*

*mainly infiltration & evapotranspiration (ET)

Presentation by W.R. Dupre', Univ. of Houston, 2018

Infiltration is	high	low	
Surface Slope	low	steep	
Soil Type	sandy	clay-rich	
Ppt. Intensity	gentle	heavy	
Soil Saturation	low	high	
Vegetation	hi %	low %	
Land Use	natural	urbanized	
Runoff is	low	high	

Presentation by W.R. Dupre', Univ. of Houston, 2018

Rainfall-Runoff Relations

For Rainfall, consider:

- Frequency
- Duration
- Intensity
- Areal distribution
- Temporal distribution

For Runoff, think "Excess Rainfall"

HARRIS COUNTY HYDROLOGIC REGION 3 RAINFALL (INCHES)

	Annual-Chance Event			
Duration	10-percent	2-percent	1.0-percent	0.2-percent
5-Minute	0.9	1.1	1.2	1.4
15-Minute	1.5	1.9	2.1	2.5
30-Minute	2.1	2.7	3.0	3.7
60-Minute	2.9	3.8	4.3	5.5
2-Hour	3.7	5.0	5.7	7.7
3-Hour	4.2	5.9	6.8	9.4
6-Hour	5.3	7.7	9.1	13.1
12-Hour	6.4	9.5	11.1	15.9
24-Hour	7.8	11.6	(13.5)	19.3
2-Day	9.0	13.1	15.1	20.7
4-Day	10.5	14.8	16.9	22.3