Richard R. Batsell (Jones Graduate School, Rice University) Sanjay Paranji (Anadarko) Jason Mintz (Formerly of Anadarko, Now of Apache)

> Prepared for Applied Geoscience Conference March 6-8, 2018 Houston Geological Society

Multivariate Modeling Of Gas Production **Using Geologic and Completion Factors**

Important Managerial Questions

Does target zone B, which costs \$200,000 a well more to complete than target zone A, produce enough additional gas to justify the extra cost? Does production increase linearly with increases in lateral length? Does proppant A produce more gas than proppant B? Holding constant geologic and completion factors, does fracking company A produce better results than fracking company B? Which is better: Sliding Sleeve or Plug and Perf? With enough cumulative experience across producing wells and sufficiently accurate models of production, the above questions, and many others, can be addressed.

Answering The Questions

Using data from 270 gas wells in the Marcellus Formation of Pennsylvania, this presentation illustrates a methodology for developing multivariate models of production. First, using all 40 available geology variables, 7 underlying key factors were extracted. These 7 geologic factors explained 50% of the variance in 180 day cumulative production. Then 20 completion variables were factor analyzed yielding 7 underlying completion factors. When the 7 completion factors were combined with the 7 geologic factors, the explained variance for 180 Day Cum increased to 64%.

Each of the 14 variables in the model are associated with a t statistic which reflects the: 1) direction of the effect of the variable on production; 2) whether or not the variable is statistically significant; and, if so, 3) the relative impact of the variable. One can thus assess the contribution of each variable to production and, eventually whether money invested in that variable yields production commensurate with the investment.

Finally, with such strong goodness-of-fit results, in essence simultaneously controlling for geology and completion factors, one can test questions like those in the first paragraph. So, target zone B's production was not significantly better than target zone A; production did increase linearly with lateral length; there were some fracking approaches that lead to significantly better results; and, Plug and Perf outperformed Sliding Sleeve. This presentation will show the methodology as applied to these 270 wells and describe these and other important tests of managerial questions.

Multivariate Modelling Of Gas Production Using Geology And Completion Factors Richard R. Batsell (Jones Graduate School, Rice University), Sanjay Paranji (Anadarko), Jason Mintz (Formerly of Anadarko, Now of Apache)

Figure 1 Frequency Distribution Of 90 Day Cumulative Gas (Mcf) Production Across 270 Wells

Figure 1 shows that the 90 day Cumulative Gas Production is very close to being normally distributed

Table 1 The 40 Geologic Variables Used In The Analysis

HeeITVD
ToeTVD
AverageTVD
MRCLAVGCORETOC
MRCLAVGVITRINITEREFLECTANCE
FaciesBCSCycleThickness
FaciesNETBCS
LWRMRCLAVGCOREPERM
LWRMRCLAVGPHIG
LWRMRCLPHIGH
LWRMRCLAVGPOISSONRATIO
LWRMRCLAVGSW
LWRMRCLAVGVCLAY
LWRMRCLAVGVSAND

LWRMRCLAVGCORETOC LWRMRCLAVGTOCWTP LWRMRCLGROSSISOPACH LWRMRCLAVGRHOB LWRMRCLAVGVP LWRMRCLAVGVP12000FPS LWRMRCLAVGDEEPRESIS LWRMRCLVLIME LWRMRCLAVGPHIT LWRMRCLEXCLUBERAVGCOREPE LWRMRCLEXCLUBERAVGPHIG LWRMRCLEXCLUBERPHIGH LWRMRCLEXCLUBERAVGPR LWRMRCLEXCLUBERAVGSW

Variables

LWRMRCLEXCLUBERAVGVCLAY LWRMRCLEXCLUBERAVGVSAND LWRMRCLEXCLUBERGROSSISO **UBERMRCLAVGCOREPERM** UBERMRCLAVGPHIG UBERMRCLPHIGH UBERMRCLAVGPR UBERMRCLAVGSW UBERMRCLAVGVCLAY UBERMRCLAVGVSAND **UBERMRCLGROSSISOPACH** UBERMRCLAVGCORETOC

Running simple multivariate models with independent variables this highly correlated, can produce unstable and difficult-to-interpret results.

Figure 3 An Example of Two Geology Variables Positively Correlated (R = . 906)

Table 2The Percent Of The Variance In The Original 40 Geologic Variables Explained By Each Of The Derived 7 Factors

Factors:	Percent Variance
GF1	23.611
GF2	20.911
GF3 TVD	14.731
GF4	9.261
GF5	7.619
GF6 Perm	7.331
GF7	6.294

Principle Components Factor Analysis identified 7 underlying dimensions present in the 40 original geology variables. Those 7 geology dimensions were rendered as 7 orthogonal new variables capturing 89.8% of the variance from the original 40.

		Cumulative Gas Mcf						
		30 Day	60 Day	90 Day	180 Day	365 Day		
	N=	270	270	269	264	211		
	Adj R ² =	42.8%	48.0%	48.9%	49.7%	50.8%		
Variables:								
GF1		9.927	11.2390	11.5670	12.1730	10.1200		
GF6Perm		8.034	9.050	9.056	8.290	5.327		
GF3TVD		4.415	4.126	4.238	4.886	4.645		
GF7		2.649	2.309	2.620	3.305	3.911		
GF2		-	-	-	-2.169	-2.585		
GF5		4.130	4.776	4.667	4.100	2.276		
GF4		-	-	_	_	2.017		

As can be seen in Table 3, the resulting multivariate model explains almost 50% of the variance in 180 Day cumulative production (Adjusted $R^2 = 49.7\%$). The t statistics in this table can be used to assess the direction and relative impact of each geology factor.

Table 3

Regression Analysis Using the 7 Geologic Factor Scores to Fit the 30 Day, 60 Day, 90 Day, 180 Day, and 365 Day Production Numbers For Gas (Number of Observations, Model Fits, t statistics: Factors are ordered by importance for 365 Day)

Table 4 The 20 Completion Variables Used In The Analysis

NetPerfdLateralLength

CleanSlickWaterVolbbls

ActualTotalFluidbbls

ActualProppantlbs

NumberofStages

TotalPerfs

LateralLengthperNumberStages

GrossLateralLengthperStage

Total100Mesh

ClusterSpacing

Variables

ClustersPerStage NumberofPerfsperCluster **AvgInjRateAllStages** CleanSlickWaterperLateralFoot ActualTotalFluidperLateralFoot **ActualProppantperLateralFoot** ActualAcidperLateralFoot ActualAcidVolbbls **AvgPerfsperStage** Tortuosity

Factors:	Percent Variance
CF1 LatLenVol	21.966
CF2 LenPerStage	17.400
CF3	16.921
CF4	16.629
CF5	9.281
CF6	5.899
CF7	5.223

The derived 7 completion factors explained 93.3% of the variance in the original 20 completion variables.

Table 5 The Percent Of The Variance In The Original 20 Completion Variables Explained By Each Of The Derived Completion Factors

	Cumulative Gas Mcf						
	30 Day	60 Day	90 Day	180 Day	365 Day		
N=	270	270	269	264	211		
Adj R ² =	47.2%	55.4%	58.7%	63.8%	66.1%		
Variables:							
GF1	10.2480	11.3960	12.2630	13.7610	10.1520		
CF1LatLenVol	2.855	5.287	6.619	8.522	8.227		
CF2LenPerStage	-2.918	-3.833	-4.235	-5.374	-5.344		
GF3TVD	3.760	3.619	4.285	5.172	5.304		
GF7	3.384	3.179	3.400	4.496	5.222		
GF6Perm	7.788	8.927	9.206	9.006	5.147		
GF2	-	-2.417	-3.270	-4.642	-4.393		
GF4	2.392	2.868	2.819	3.447	3.827		
GF5	4.625	5.299	5.128	4.733	2.678		
CF4	-	-	-	-	-2.050		
CF3	-2.869	-2.062	-	-	-		
CF5	-	-	-	-	-		
CF6	-	-	-	-	-		
CF7	-	-	-	-	-		

Table 6

Step 2: Regression Analysis Using the 7 Geologic and 7 Completion Factor Scores to Fit the 30 Day, 60 Day, 90 Day, 180 Day, and 365 Day Production Numbers For Gas (Number of Observations, Model Fits, t statistics: Factors are ordered by importance for 365 Day)

One Caution, One Generality, and 4 Additional Examples Of The Successful Application Of The Methodology In This Presentation

1) Care in defining your variables 2) Applies to oil as well as gas production 3) Marcellus versus Uber 4) Linearity of production 5) Plug and Perf versus Sliding Sleeve 6) Fracking Company A versus Fracking Company B

