

Sampling a Stimulated Rock Volume: An Eagle Ford Example

Kevin T. Raterman, Principal Engineer ConocoPhillips

<u>Stimulated Rock Volume...</u> Where to begin?

Our Questions

• What is <u>Stimulated versus</u> <u>Drained</u> <u>Rock</u> <u>Volume</u>?

- Are SRV and DRV identical?
 - What data are sufficient to describe either?

– What is the spatial extent and variability of SRV/DRV?

- Well spacing and stacking
- Cluster spacing

Are outcomes repeatable?

Can predictions be improved?

• Fracture and proppant propagation modeling

Pilot Design

- Spatial sampling ... define what is there
 - 2 Pre-completion sample wells
 - 4 Post-completion sample wells
- Remote completion monitoring ... extend beyond the known
 - Distributed Acoustic/Temperature Sensing (DAS/DTS)
 - Dual well microseismic
- Production monitoring ... establish link to performance
 - Production logs
 - Tracers (oil, water, and proppant)
 - Pressure monitoring within the SRV

Location and Geologic Setting

Pilot Layout / Data Acquisition

Well	Producer	Cuttings - proppant	Core	Image Logs	RA Tracer	RA Tracer Log	DTS/DAS	Geophones	Pressure Gauges
P1	Х								
P2	Х				Х	х			
P3	Х				Х	Х	Х		Х
P4	Х					х			
P5	Х								
S1				Х		Х	х	Х	х
S2			Х	Х				Х	
S3		Х	Х	Х		х			
S3 ST01		х		x		x			
S3 ST02		х		х		x			
S3 ST 03		x	х	х		x			х

Completion Design

Design Type	Limited entry			
Clusters /Stage	5			
Cluster Spacing	47 ft.			
Pre flush	Acid/linear gel			
Slurry Carrier Fluid	30# borate gel			
Flush	Linear gel/slickwater			
Fluid Volume	21 bbl./ft.			
Proppant Load	1500 lb./ft.			
Proppant type	White sand			
Proppant Size	40/70, 30/50			

Hydraulic Fracture Characteristics

- Frequency
- Spatial distribution
- Length and height
- Simple or complex
- Vertical or dipping
- Orientation vs principal stresses

Base State : Natural Fractures

- Pilot located in seismically quiet area
 - No mappable faults
 - Few subseismic features (FEV)
- S1 image log 1 fracture in 216 ft. of section
- S2 baseline core 5 fractures in 200 ft.
- S2 image log 7 fractures in 1,120 ft.
- Natural and hydraulic fractures are ~ parallel

Hydraulic Fracture Facts

- Abundant
- Not mineralized
- Extensional
- Planar and dipping
- Strike perpendicular to S_{Hmin}
- Smooth, ridged, and stepped surfaces
- No matrix damage

Hydraulic Fracture Complexity

- Branching evident in core and FMI
- Complex 3D fracture pattern
 - More prevalent upwards vs outwards

Upward

Hydraulic Fracture Swarms

- Swarms of closely spaced hydraulic fractures
- Less intensely fractured between swarms
- 15 25 fractures per swarm
- Weak correlation between swarm frequency and cluster spacing

Hydraulic Fracture Spacing

- Fracture count exceeds cluster count
- 20 60% of wellbore has fractures at < 5ft. spacing (swarm)
- Larger gaps with distance from producer

Hydraulic Fracture Density

- Fracture density and count greatest near producer
- Fracture density declines upward and outward

Dip and Orientation

- Perpendicular to S_{Hmin}
- Strike: N 60° E
- Dip: 75-80°SE
- Predominantly parallel fractures at all locations
- More dip variation above the producer

Hydraulic Fracture Composite

Proppant Abundance

- 3 proppant filled fractures in 480 ft. of core (7 perf clusters)
- Little evidence for abundant proppant transport at distances greater than 75 ft.

Hydraulic Fracture Character

- Hydraulic Fractures are complex not simple
 - multiple, discrete and parallel
 - dip, but align with in-situ stress
 - spatially distributed unevenly
 - often occur in swarms

- Proppant is rarely sampled, especially far from producer
 - RA tracers indicate limited wellto-well proppant transport
- No matrix permeability enhancement
 - core perm measurements

Remote Monitoring

- What do microseismic & DAS tell us about the SRV?
 - What is the relationship between DAS & MS events and hydraulic fractures?
 - How should microseismic / DAS data be used?
 - SRV dimensions?
 - Indicator of permeability enhancement?
 - Related to drainage?

Microseismic

- Co-located events
- 90% of events within Eagle Ford
- Linear to dispersed stage event patterns
- Few events in toe of P3
- Events reach adjacent wells (>1000 ft.)

HF Density to MS Density Correlation

• Poor correlation between MS events and all Hydraulic Fractures

Cross-Well DAS (vertical well S1)

- DAS, MS and pressure response concurrent
- Pressure exceeds S_{Hmin} indicating fracture event

DAS measures a strain rate change Red = extension Blue = compression

Cross-Well DAS (horizontal well P3)

DAS Completion Monitoring

- DAS response recorded from all monitored stages at P3
- Multiple hydraulic fractures per stage extend >1,500 ft.
- Pre-existing hydraulic fractures at P3 prior to stimulation

A Few Key Points

- Hydraulic stimulation creates fracture complexity
 - Simple concepts of one fracture per cluster are unrealistic
 - Fracture area likely exceeds that predicted by models
- Multiple fractures per stage extend long distances
- Sparse evidence for abundant proppant transport beyond 75 ft.
- Microseismic events do not adequately represent hydraulic fracture abundance and density

Acknowledgements

- ConocoPhillips
- Extended technical team, contractors and vendors who met the unique operational and analysis challenges