

Log Response Groups: Letting the Data Speak For Itself

J. L. Gevirtz Sr. Geological Advisor and Adriana Ovalle, Manager Geology and Geophysics, Halliburton Global Consulting

Why are Log Response Groups Important?

- Logs are the most detailed measurements that are related to subsurface lithology and fluids
- We are interested in examining rocks and fluids as they existed when wells were drilled and logged
- Log response groups (LRG) are objectively defined and can be directly related to rock properties if core and/or sample data are available
- Log response groups do not rely on subjective geological interpretations or petrophysical models
- Subjective geological interpretations or petrophysical models can be introduced after the fact

Log Discrimination For Two Common Rock Classifications

 τ statistic – represents proportion of correctly classified samples

Wilk's $\lambda\,$ - represents fidelity of variable suite as discriminators. The lower the value the better the resolution

Logs by themselves are not good discriminators for either classification

42.64%

66.40%

48.29%

45.18% 39.60%

M. Wolfcamp

L. Wolfcamp

Canyon

Cline

Strawn

Group	wisclassification
One	16.67%
Two	10.09%
Three	51.07%
Four	16.67%
Five	59.71%
Six	35.48%

Benefits of LRG's

- Independent, data driven, log analysis that is not reliant on a subjective model
- Each LRG represents a unique set of reservoir properties that are critical to understanding the reservoir
- LRG's are direct inputs to the static earth model, and provide quantitative measures for property models
- LRG's have a predictive property that is useful in asset evaluations and risk mitigation

Rationale

- There is limited direct analysis (core) of the rocks in the objective unit.
- A complete reservoir characterization is required.
- Log data are the most complete data available for reservoir characterization.
- Use of the conditioned logs as a surrogate for actual rock description.
- This analysis is meant as an aid to interpretation of rock properties in lieu of a good geologically defensible facies description.

Required Data

- Wells with the most comprehensive log suites available (required)
- Core analysis reports (desirable)
- Thin section data, including point counts (desirable)
- Drilling reports detailing drilling fluids, bit size, and well path (good to have)

Workflow for Defining Log Response Groups

Multivariate Outlier Detection

Red points are outlier candidates for evaluation. Outliers must be individually evaluated to determine why they exist

Well Differences

Curve	Wilk's λ
LOG10 RT	0.8056
NPHI dec	0.5090
GRTO API	0.3601
Uranium ppm	0.2277
Potassium %	0.1331
Thorium ppm	0.0732
DTS us/ft	0.0517
DTC us/ft	0.0397
RHOB g/cc	0.0352
PE b/e	0.0316

Curves are those planned to be used to define log response groups

Wells can be roughly separated by logs. This represents spatial variation of the Wolfcamp

Analytical Methods and Procedures

- Data conditioning and other decisions
 - Variable selection
 - Similarity coefficient selection
 - Data scaling to remove magnitude effects
- Unsupervised Classification
 - Heirarchical cluster analysis
- Classification Evaluation
 - Stepwise linear discriminant analysis (LDA)
- Supervised classification
 - Classification of unknown samples with discriminant function
- Classify unknown wells with functions obtained from LDA

Hierarchical Classification of 600 sample training set

Partitioned hierarchy

Group Compositions – Star Plots

Classification Evaluation – Discriminant Analysis

 τ statistic — represents proportion of correctly classified samples

Wilk's $\lambda\,$ - represents fidelity of variable suite as discriminators. The lower the value the better the resolution

Integrated Approaches of Unconventional Reservoir Assessment and Optimization – 2017

Variable order DTC us/ft PE Log10 RT Thorium ppm DTS us/ft Uranium ppm NPHI Potassium %

Misclassifications la - 8.89% lb - 7.01% ll - 0.00% lll - 9.62% lV - 4.76%

Geological Interpretation

Integrated Approaches of Unconventional

Reservoir Assessment and Optimization -

Case Study – Wolfcamp of the Delaware Basin

Challenge

- Many reservoir rocks consist of several alternating lithologies in varying proportions
- Difficult to accurately develop a sufficiently detailed lithological correlation to apply to a reservoir model

Solution

- Log suites used to represent rock types
- Use pattern recognition methods to derive multivariate log response groups
- Use log response groups to populate earth model with important properties

Results

- Earth model with spatial predictability
- Better definition of well locations and lateral locations

Good and Poor Producing Wells

Lateral Landing

Example Well

la – 13.25 lb – 19.25 ll – 0.0 lll – 34.5 IV – 3.0 **Presumed** productive interval

Net thickness

30 day 32/64" average = 1354BOE, 2350 water 30 day average IP/lat. Ft. = 0.36BOE, 0.63 water 30 day Cum/lat. ft. = 10.86BOE, 18.65 Water

Relationship Between LRG and Production

Conclusions

- A variety of statistical and non-statistical methods are used to recognize similar log response patterns that can be applied to unconventional production
- Use of these methods has enabled selection of the best rock types for fracturing, production, etc.
- High correlation of Group III rocks with production suggests that most oil and water production originate in Group III rocks.
- Gas can originate in either rock type
- Intercepts of the reduced major axis regressions suggest that some oil and water have migrated into the carbonate marls from elsewhere.

Acknowledgements / Thank You / Questions

We gratefully acknowledge Halliburton C&PM for permission to publish We wish to thank the many internal reviewers who offered many constructive criticisms