

Why is it more difficult to produce black oil from tight shale?

- Permeability
- Molecular size: physical limitation
- Viscosity: resistance to flow
- Polarity:
 - adsorptive affinity
 - Wettability
- GOR: pressure
- et al. ...

L	tcu	тси	Energy	Institut

Select Risk Factors for plays and targets										
Unconventional Development Risk Factors										
📫 RF-1	Oil Crossover		🕈 RF-16	Water saturation 🖶 RF		⇒RF-31	Barrier			
RF-2	TOC _{original}		RF-17	Gas saturation		RF-32	Healed Fractures			
RF-3	HI _{original}		RF-18	Overpressured		RF-33	Open Fractures Faults Structure			
RF-4	TOC _{present-day}		RF-19	Thickness		RF-34				
RF-5	HI _{present-day}		RF-20	Burial history		RF-35				
RF-6	Depositional System		RF-21	Depth _{present-day}		RF-36	Terrain			
RF-7	Source or Hybrid		RF-22	Depth _{max}		RF-37	Infrastructure			
📫 RF-8	Maturity		RF-23	Carbonate		RF-38	Oil/Gas prices			
RF-9	TR		RF-24	Quartz		RF-39	Proppant			
📫 RF-10	SARA		RF-25	Clay		RF-40	Services			
RF-11	API gravity		→ RF-26	Organofacies		RF-41	Rigs			
📫 RF-12	GOR		⇒ RF-27	Brittleness	-					
RF-13	Porosity		RF-28	Poisson ratio						
RF-14	RF-14 Permeability		RF-29 Youngs Modulus 📥 in		📥 in p	presentation				
RF-15	Oil saturation		⇒ RF-30	Baffle	→ discussed in talk					
CU TCU Energy Inst	titute			Jarvie HGS Dow	ntown	Permian Basin	presentation Jan 2018			

Jarvie HGS Downtown Permian Basin presentation Jar

Techniques for	Evaluatio	on of Ther	mal Matu	rity	
	Industry				
Method	Standard	Variability	Range	Price	Delivery
Vitrinite reflectance	Х	High	complete	Mod	Slow
Kerogen color		Mod	oil zone	Mod	Slow
Rock-Eval Tmax	Х	High	oil zone	Low	Fast
Kerogen conversion ratio		Low	complete	Low	Fast
Dry gas ratio		Low	complete	Low	Fast
Carbon isotopes	x	Low	complete	High	Mod
Pyrolysis GC MS			oil zone	High	Mod
Biomarkers (standard approach)	x	Mod	oil zone	High	Slow
			complete	High	Fast
Aromatic hydrocarbons					

	٦	ma	x to	%Ro	o Co	orrel	atio	n D	ata	
Reference:	Hatch et al. (1984)	Espitalie et al., 1985	Delvaux et al. (1990)	Duppenbecker, 1992	Basken and Peters (1992)	Veld et al. (1993)	Gentzis et al. (1993)	Petersen (2002)	Cornford et al. (2002)	Petersen (2006
Basin or area:	Kansas	Paris	various	Lower Saxony	Santa Maria	The Netherlands	Canadian Arctic	various	various	various
Age:	Pennsylvanian					Westphalian		CarbonTertiary	worldwide database	
Samples:	Cherokee coals	Toarcian Shale	Type I, II, III, IV, coals	Posidonia Shale	Monterey Shale	coals	marine/non-marine	humic coals		humic coals
Count:	n=19	n=8	n=21	n=12	n=4	n=402	(est. linear fit)	n=89	n=unknown	n=494
	0.0122*Tmax-4.7572		0.0179*Tmax-7.1178	0.0129*Tmax-5.0335					0.01857*Tmax-7.4514	
R ² :	0.86	0.96	0.86	0.88	0.99	0.89	na	0.96	0.74	0.87
Tmax (°C)	%Roe	%Roe	%Roe	%Roe	%Roe	%Roe		%Roe	%Roe	%Roe
430	0.49	0.66	0.58	0.51	0.55	0.75	0.52	0.61	0.53	0.65
435	0.55	0.73	0.67	0.58	0.63	0.82	0.62	0.70	0.63	0.73
440	0.61	0.80	0.76	0.64	0.71	0.89	0.73	0.80	0.72	0.82
445	0.67	0.86	0.85	0.71	0.79	0.96	0.83	0.90	0.81	0.90
450	0.73	0.93	0.94	0.77	0.87	1.03	0.94	0.99	0.91	0.98
455	0.79	0.99	1.03	0.84	0.95	1.10	1.04	1.09	1.00	1.07
460	0.85	1.06	1.12	0.90	1.03	1.17	1.15	1.19	1.09	1.15
465	0.92	1.12	1.21	0.97	1.11	1.23	1.25	1.28	1.18	1.24
470	0.98	1.19	1.30	1.03	1.19	1.30	1.36	1.38	1.28	1.32
475	1.04	1.25	1.38	1.09	1.27	1.37	1.46	1.47	1.37	1.41
480	1.10	1.32	1.47	1.16	1.35	1.44	1.57	1.57	1.46	1.49
485	1.16	1.38	1.56	1.22	1.43	1.51	1.67	1.67	1.56	1.58
Reference:	Wüst et al. (2012)	Lee, 2015	Lee, 2015	Hackley and	Drozd and	Drozd et al. (2017)	Lewan and	Lewan and	Humble 2003	Jarvie et al.
	M. Constant of the			Baugher (2016)	Knowles (2017)	Black Warrior	Pawlewicz (2017)	Kotarba (2014)	(in L&P, 2017)	(2001)
Basin or area:	W. Canadian Sed. (Trican data)	various China, Taiwan	various China, Taiwan		10 basins in USA	Black Warrior	Ft. Worth		Ft. Worth	Ft. Worth
Age: Samples:	Duvernay	coals, coaly shales	coals, coaly shales	coal (HP results)*		Floyd Shale	Barnett Shale	humic coals	Barnett Shale (core)	Barnett Shale (co
Count:	n > 1000	n=608	n=580	n=6	n=1375	n=245	n=57	n=35	n=4	n=79
%Roe(Tmax):	0.0149*Tmax-5.85	0.0188*Tmax-7.5582			0.0181*Tmax-7.147	0.0154*Tmax-5.972	0.022*Tmax-8.57	0.0103*Tmax-3.785	0.0174*Tmax-6.9523	0.0180*Tmax-7.
R ² :	na	0.74	0.79	0.98	0.78	na	0.56	0.97	0.99	0.79
	%Roe	%Roe	%Roe	%Roe	%Roe	%Roe			0.33	0.79
Tmax (°C) 430	%KOE 0.56	76KOE 0.53	%K0e 0.54	%K0e 0.80	%K0e 0.64	%K0e 0.65	%Roe 0.89	%Roe 0.64	0.53	0.58
430	0.63	0.62	0.63	0.89	0.73	0.03	1.00	0.70	0.62	0.58
435	0.71	0.71	0.72	0.98	0.82	0.80	1.11	0.75	0.70	0.76
445	0.78	0.81	0.81	1.07	0.91	0.88	1.22	0.80	0.79	0.85
450	0.86	0.90	0.90	1.16	1.00	0.96	1.33	0.85	0.88	0.94
455	0.93	1.00	0.99	1.25	1.09	1.04	1.44	0.90	0.96	1.03
460	1.00	1.09	1.08	1.34	1.18	1.11	1.55	0.95	1.05	1.12
465	1.08	1.18	1.17	1.42	1.27	1.19	1.66	1.00	1.14	1.21
470	1.15	1.28	1.26	1.51	1.36	1.27	1.77	1.06	1.23	1.3
475	1.23	1.37	1.35	1.60	1.45	1.34	1.88	1.11	1.31	1.39
480	1.30	1.47	1.44	1.69	1.54	1.42	1.99	1.16	1.40	1.48
485	1.38	1.56	1.53	1.78	1.63	1.50	2.10	1.21	1.49	1.57

An exponential fit to the less evaporated sample provides an exponential factor that is indicative of thermal maturity; the pre-exponential factor is a function of concentration

References Mango, F.D. and D.M. Jarvie, 2001, GOR from Oil Composition, 20th International Meeting on Organic Geochemistry, Nancy, France, Sept. 10-14, 2001, Abstracts Vol. 1, pp.406-407. McCain, Jr., W.D., 1990, The Properties of Petroleum Fluids, 2nd Ed., PennWell Publishing Co, Tulsa, OK, 548p. Pepper, A.S. and T.A. Dodd, 1995, Simple kinetic models of petroleum formation. Part II: oil-gas cracking, *Marine and Petroleum Geology*, Vol. 12, No. 3, pp. 321-340.

Rocher, D., C. Barrie, and J. Zumberge, 2015, Thermal maturity of light oils & condensates – 'VREQ' using GC-Triple Quad MS to measure alkyl aromatics, GeoMark Research Workshop, 26 August 2015, 38p.

Sandvik, E. I., W. A. Young, D. J. Curry, 1992, Expulsion from hydrocarbon sources: the role of organic absorption, in Advances in Organic Geochemistry 1991, Organic Geochemistry, v. 19, nos. 1-3, p. 77-87.

Santamaria Orozco, D.M., 2000, Organic geochemistry of Tithonian source rocks and associated oils from the Sonda de Campeche, Mexico, Ph.D thesis, Rheinisch-Westfalischen Technischen Hochschule Aachen (RWTH), 170 p.

Whitson, Curtis H. and Michael R. Brulé, 2000, Phase Behavior, SPE Monograph Volume 20, Henry L. Doherty Series, 240p.

Zumberge, J., K. Ferworn, and S. Brown, 2012, Isotpic reversal ('rollover') in shale gases produced from the Mississippian Barnett and Fayetteville formations, Mar. Pet. Geol., 31, p. 43-52.

Jarvie HGS Downtown Permian Basin presentation Jan 2018

Jarvie HGS Presentation, 24 January 2018, Houston, Texas

TCU Energy Institut