

Multi-Phase Fluid Imbibition, Distribution, and Wettability in Shale through Synchrotron-Based Dynamic Micro-CT Imaging

Sheng Peng, Research Associate, UT BEG

Why we need digital rock physics?

- To predict flow properties
 - Permeability
 - Relative permeability
 - Very hard to get otherwise
- To reveal pore- to micro-scale details
 - Pore structure
 - Flow processes and fundamentals

Digital rock physics for shale

Very challenging

Small pore size

- 20-50 nm
- N₂ adsorption
- Even smaller pore throats
 - 5-10 nm
 - MICP

Peng et al., 2017

Very high resolution is needed to resolve pores in shale

- FIB/SEM
 - 5-10 nm image resolution
 - ≥10 nm milling resolution
 - Only locally-connected porenetworks can be obtained
 - Acquired volume
 - ~10×10×10 µm³

Peng et al., 2015

Curtis et al., 2011

Representativeness and up-scaling

- Small pore networks need to be evaluated within a larger framework
- Basic

"representative" unit for flow: mm-scale

Network of low-Micro-CT image density-features

Peng et al., 2015

Fluid flow in shale

- A lot of uncertainties and unknowns
 - How hydrocarbon moves from pores in matrix to production wells?
 - How much matrix contributes? In what pattern, uniformly?
 - What's fracture-matrix interaction?
 - Wettability: clay more hydrophilic? Organic matter more hydrophobic?
- Digital rock and fluid
 - Direct visualization of fluid flow

A technique of tracer + micro-CT imaging

• Diiodomethane: an oil-phase tracer

Peng and Xiao, 2017

Sub-mm-scale oil distribution

- Brighter areas:
 - Higher oil saturation/abu ndance
 - Pores with imbibition are accessible, and
 - Oil-wet

- Fractures
 - In organic matter layer
 - With mineral or mixed "wall" (clay minrals)
 - Overall oil-wet

- Pores
 - In organic matter
 - Not all organic matters are involved (no connection or no pores)
 - Mineral pores, can be oil-wet

SEM images

- Include both mineral and organic matter pores
- Oil-wet

How far the oil goes into the matrix?

T = 0.5 h vs. 3 h

T = 0.5, 1, 2, 3 h, lighter to darker colors

Water imbibition in oil-imbibed sample

- Oil in fractures was replaced by water
 - Fractures (either w/ organic or mineral wall): more water wet than oil-wet
 - CA_ oil = 46.2±0.62°; CA_water = 81.5±2.7° (Sessile drop method)
 - Contradictory
- Oil in matrix: no obvious change

- Not just wettability
 - Oil displaced in OM fracture, but retained in nearby OM pores
- Residual oil in fracture
 - Wettability and surface conditions (roughness) are complicated

Water imbibition in the matrix of the oil-imbibed sample

Residual oil in a fracture

- Water imbibition in the oilimbibed sample
- Displacement of oil by water in fracture
 - Non-uniform
- Residual oil saturation
 - 15-60%
- Influencing factors
 - Fracture configuration
 - Wettability

Example of no imbibition in fractures

- Fractures are not always the preferential flow path
 - Wettability
- Still many unknown
 - Local mineralogy?
 - Sample condition?
 - Absorbed water or oil film?

Importance of image pre-treatment

- Precise alignment (registration)
- Background grayscale correction

200

50

100

200

Distance (px) -25

300

400

-20

500

-15

Immiscible two-phase flow related parameters

	CH ₂ I ₂	decane	dodecane	•
Viscosity 20 °C (mPa.S)	2.76	0.86	1.36	
Interfacial surface tension at 20 °C (oil-water, mN/m)	35.8 ⁺	52.3 [*]	52.8*	•
Density (g/mL)	3.32	0.73	0.75	•
M (relative to water)	3.1	0.97	1.53	
Ca normalized by Ca_CH ₂ I ₂	1.0	0.21	0.33	† f
Re normalized by Re_CH ₂ I ₂	1.0	0.71	0.46	* fr

- M: mobile ratio
- Ca: capillary number
- Re: Reynolds number
- ⁺ from Dataphysics (1998)^{*} from Zeppieri et al. (2001)

- M, Ca, Re: Same order of magnitude
- Two-phase fluid flow behavior of CH₂I₂: comparable to decane or dodecane

Key points

- Complexity and heterogeneity of multi-phase fluid flow in microfracture and matrix in shale are documented/visualized for the first time
- Influencing factors, including wettability and connectivity, are discussed, but still many unknowns exist
- Nevertheless, the technique of tracer plus micro-CT provides an avenue for further exploration of multiphase flow and related applications, such as flow under pressure, water-oil distribution, EOR, etc.

Acknowledgement

- BEG MSRL member companies: <u>http://www.beg.utexas.edu/msrl/sponsors</u>
- Dr. Xianghui Xiao Argonne National Laboratory