AUTOMATED GEOSTEERING USING A BAYESIAN NETWORK

HUGH WINKLER, Factor Technology

CLAIMS

- Humans can no longer do accurate geosteering interpretations quickly enough: we have to compute them
- The *only* way to solve the geosteering problem is probabilistically
- The Bayesian network approach is the best way to compute an interpretation and automate geosteering.

CLAIM 1

- Humans can no longer do accurate geosteering interpretations quickly enough: we have to compute them
- The only way to solve the geosteering problem is probabilistically
- The Bayesian network approach is the best way to compute an interpretation and automate geosteering.

DRILLING SPEEDS HAVE QUADRUPLED SINCE 2014

August 2018: 350 feet per hour

Cyclone Drilling

GEOSTEERING: A SCIENCE PROJECT EVERY 30 MINUTES

- Used to have 4 hours; now 30 minutes
- Interactively apply judgment
- High Cognitive Load
- Shift Work
- Costly Mistakes
 - Excess Tortuosity
 - Missed Exposure to HC
 - Sidetracks

CLAIM 2

- Humans can no longer do accurate geosteering interpretations quickly enough: we have to compute them
- The *only* way to solve the geosteering problem is probabilistically
- The Bayesian network approach is the best way to compute an interpretation and automate geosteering.

BAYESIAN NETWORKS: A WAY TO AUTOMATE GEOSTEERING

- Modeled it as a Bayesian network
- Leverage 30 years of machine learning development
- Massively parallel GPU computation
- We tell you where the geology (probably) is
- We tell you where the wellbore (probably) is
- Extensible to decision-making

Geosteering by exact inference on a Bayesian network Winkler (2017) *Geophysics*

CAN'T WE JUST CORRELATE?

- Interactive software tools help you find structure that maximizes correlation. Can't we just automate *that*?
- No: correlation is least-squares optimization
 - Correct only if all uncertainties are normally distributed
 - Spoiler: they aren't
 - Logs: Inverse mapping of GR -> log depth: multimodal
 - Faults: Change in structure due to faulting : multimodal or power law
 - Angles: Mapping of normally distributed uncertainty in angular measurements to rectilinear: weird

CORRELATION (ALONE) NOT UNIQUE

Both of these interpretations explain the LWD equally well

CORRELATION (ALONE) DOES NOT RESOLVE AMBIGUOUS TYPE LOG

Both of these interpretations explain the LWD equally well

Interpretation 1: Upper stratum

Interpretation 2: Lower stratum

CORRELATION (ALONE) DOES NOT RESOLVE AMBIGUOUS FAULT

Both of these interpretations explain the LWD equally well

trajectory ->

LWD GR = constant

Interpretation 1: Fault

Interpretation 2: No fault

HEURISTICS: THE EXTRA INGREDIENT

Geologists usually aren't fooled by correlation pitfalls

They apply heuristics, and override the maximum correlation coefficient

- The dip can only be in some reasonable range for this region
- Faults occur with some regional frequency and throw
- Drill pipe can only bend so much
- Noise in log, depth, and survey measurements allow wiggle room to adjust geologic structure and wellbore position

We model those heuristics as probabilities

THE GEOSTEERING PROBLEM

Given

...That stratigraphy varies laterally by dipping and faulting Priors:

Type logs (estimate of stratigraphy) Estimate of structure

Estimate of fault frequency and throw

Measurements

Along-hole depth

Surveys

While-drilling log

Uncertainties for all priors and measurements (i.e. probabilities)

Calculate Posteriors Geologic structure True wellbore trajectory

measurements to update our prior beliefs

PROBABILITY OF DEPTH GIVEN GAMMA RAY

Consider one point along wellbore Given a GR reading:

 What is the probability the tool investigated any particular depth? (Remember the GR reading has uncertainty)

Well logs map:

- depth -> GR
- GR -> depth ambiguously

Model as probability

• P(depth | GR)

BUT WE HAVE MORE INFORMATION...

- If you had some idea where you were at the *previous* survey location, then
 - What are the chances the earth dipped up or down? How much?
 - What are the chances you crossed a fault? How large?
 - The two surveys define a minimum curvature position estimate. How much might it be off?
 - These are all also probability functions (i.e. random variables)
 - "Wiggle room"
- When you account for the influence of these other factors, modify your probability ("update your priors")

MUTUAL INFLUENCE ACROSS NEIGHBORS

"THE ANSWER"

... is the joint probability over **all** these random variables across the whole well

This answer is a function over thousands of dimensions

CLAIM 3

- Humans can no longer do accurate geosteering interpretations quickly enough: we have to compute them
- The only way to solve the geosteering problem is probabilistically
- The Bayesian network approach is the best way to compute an interpretation and automate geosteering.

BAYESIAN NETWORK CALCULATES JOINT PROBABILITY

- Naïvely, the joint is the product of all the individual probability functions
 - Would require more bytes of memory than there are atoms in the universe (10^80)
- BN recognizes the conditional relations among the thousands of variables
 - Collapses the problem to a tractable size

COMPUTED INTERPRETATION

"ELLIPSES" OF UNCERTAINTY

(different well than previous/next)

RETROSPECTIVE RESULTS

DETECT SUBSEISMIC FAULTS

MASSIVELY PARALLEL COMPUTATION

- BN still requires a massively parallel computation on NVIDIA GPU
- ~5000 multiprocessors
- 60 GB -> 2TB RAM
- Results at bit depth in a minute
- Recompute 8000' lateral in an hour

HOW YOU USE IT: REAL TIME

- Enter pre-job parameters, then sit back and watch while they drill the lateral
- Result: an always up to date computed interpretation.

HOW YOU USE IT: RETROSPECTIVELY

- Field or regional studies: bulk resteer old wells
- Collaboration between customer and Factor
- Objectives:
 - Update maps
- Idea: report P10/50/90 feet in/feet out of zone

AUTOMATION EMPOWERS GEOLOGISTS TO DO GEOLOGY AGAIN

- Companies need not "staff up" to handle increased activity
 - Fewer entry level geologists to train, manage, and trust with ops
 - Fewer personnel to let go in a downturn
- Geologists once again "own" their wells
 - No shift work just to manually work interpretation tools
- Development geologists focus attention on extracting oil and gas
- Manage operations by exception with the core team

