In situ SIMS Oxygen Isotope Analyses Reveals a Continuous 300 Ma History of Carbonate Cementation and Dolomitization in the middle Bakken

Andrew C. Aplin¹, Mark W. Brodie¹, Ian Orland², John W. Valley², Bruce Hart³ ¹Durham University ²University of Wisconsin ³Statoil ASA, Austin

Outline

- Middle Bakken: Reservoir Quality
- In Situ Oxygen Isotopes using Secondary Ion Mass Spectrometry
 - Temperature/timing of calcite and dolomite formation? Continuous or punctuated diagenesis? Dolomite: primary cement or dolomitization of calcite? Closed or open geochemical system?
- Petrophysics

Williston Basin

Bakken Formation

Low shoreface B Low - mid shoreface C Mid shoreface **D**1 Mid shoreface D2 & Storm Deposit Low shoreface E

> Durham University

Middle Bakken: Porosity

Calcite and Dolomite Define Bakken Reservoir Quality

Calcite Cement is Early

Early Calcite

5 – 50 Micron Dolomite Crystals

Oxygen Isotopes Preserve Information about Fluid and Temperature

$$\delta^{18}O_{water} = 0\%$$

 $\begin{array}{l} \delta^{18} O_{mineral} \text{ depends on:} \\ \delta^{18} O_{water} \\ \hline \text{Temperature} \end{array}$

IF We Know $\delta^{18}O_{H2O}$: We Know Precipitation Temperature(s) and Time(s)

Conventional Analytical Techniques Analyse Mixed Phases

Dental drill

Selective leaching

Determining $\delta^{18}O_{(Carbonate)}$

Secondary Ion Mass Spectroscopy

Example SIMS Pit

$\delta^{\mbox{\tiny 18}}\mbox{O}$ of Calcite and Dolomite

 $5 - 9 \ \% \ \delta^{18}$ O Range Over 5 Millimetres

Colours represent sample/facies

Precipitation Temperatures Require $\delta^{18}O_{H20}$

- $\delta^{18}\text{O}_{\text{mineral}}$ depends on:
- $\delta^{18}O_{water}$
- Temperature

 δ^{18} O of = -1.5‰ for Late Devonian

seawater

300 Ma Cementation and Dolomitization History

Kinetics: Dolomitization of Platform Carbonate by Geothermal Convection

Whitaker and Xiao (2010)

Dolomitising Fluids

Cementation: Summary

- Oxygen isotopic variations as great on millimetre scale as metre scale
- Many previous studies will have yielded smudged isotopic/diagenetic histories
- Dolomitisation: ultra-slow process in very sluggish flow systems /almost closed chemical systems

Petrophysical Implications

Pore Size and Estimated Permeabilities

Displacement (Capillary Entry) Pressure

How Did The Middle Bakken Fill?

Petroleum Generation: Volume Change

Simplistic closed-system calculations, without compaction: 10-17 MPa increase in pressure to mid oil window 30-40 MPa in late oil window 50 MPa+ in early gas window

Okiongbo (2004)

Wetting State: Oil and Water on Oil-wet Leaf

Wetting State of Tight Oil Carbonate: Environmental SEM

Comments & Questions?

